Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

The polyoxometallate $[(CH_3)_4N]_2[Mo_4O_{10}(OCH_3)_4Cl_2]$

Neven Strukan et al.

Electronic paper

This paper is published electronically. It meets the data-validation criteria for publication in Acta Crystallographica Section C. The submission has been checked by a Section C Co-editor though the text in the 'Comments' section is the responsibility of the authors.

© 2000 International Union of Crystallography • Printed in Great Britain - all rights reserved

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

The polyoxometallate $[(CH_3)_4N]_2$ - $[Mo_4O_{10}(OCH_3)_4Cl_2]$

Neven Strukan,^a* Marina Cindrić,^a Tanja Kajfež,^a Boris Kamenar^a and Gerald Giester^b

^aLaboratory of General and Inorganic Chemistry, Faculty of Science, University of Zagreb, Ul. kralja Zvonimira 8, PO Box 153, HR-10000 Zagreb, Croatia, and ^bInstitut for Mineralogy and Crystallography, University of Vienna, Althannstrasse 14, A-1090 Wien, Austria

Correspondence e-mail: nstrukan@chem.pmf.hr

Received 30 May 2000 Accepted 5 September 2000

Data validation number: IUC0000253

The crystal and molecular structure of bis(tetramethylammonium) dichlorotetra- μ_2 -methoxo-di- μ_2 -oxo-octooxotetramolybdate(VI), (C₄H₁₂N)₂[Mo₄O₁₀(OCH₃)₄Cl₂], has been determined from X-ray diffraction data. The crystallographically centrosymmetric anion is built up of four edgesharing octahedra, two MoO₆ and two MoO₅Cl.

Comment

During a continuing investigation of the structuremechanism-function relationship regarding the role of molybdenum as a catalyst in the esterification reactions of 2mercaptonicotinic acid (Cindrić et al., 1998), we obtained the tetramethylammonium salt of dichlorotetra- μ_2 -methoxo-di- μ_2 -oxo-octaoxotetramolybdate(VI), $[(CH_3)_4N]_2[Mo_4O_{10}-$ (OCH₃)₄Cl₂]. The same anion has already been observed in the complex $({}^{n}Bu_{4}N)_{2}[Mo_{4}O_{10}(OCH_{3})_{4}Cl_{2}]$ (Liu *et al.*, 1987; Kang et al., 1989). The tetranuclear unit is by far the most common compositional motif in the coordination chemistry of polyoxomolybdates, as adopted by $[Mo_4O_{10}(OMe)_6]^{2-}$ (Liu et al., 1987; Kang et al., 1989), with four edge-sharing octahedra in the compact cluster. Such structures illustrate a common feature of the chemistry of polymolybdates in alcoholic solvents, i.e. the incorporation of alkoxy groups into the cluster. Formation of the underivatized polyoxomolybdate parent structure, $[Mo_4O_{16}]^{8-}$, is most likely precluded by the high negative charge. Replacement of bridging oxo groups by alkoxy ligands serves to reduce the overall cluster charge and hence to stabilize the unit in alcoholic solvents. Thus, the same core structure with replacement of peripheral and/or bridging alkoxy groups is common to the structures of [Mo₄O₁₀- $(OCH_3)_4Cl_2]^{2-}$, $[Mo_4O_{10}(OCH_3)_2(OC_6H_4O)_2]^{2-}$ (Kang et al., 1989) and $[Mo_4O_8(OC_2H_5)_2[RC(CH_2O)_3]_2]$ (Wilson et al., 1983).

The crystal structure of the title complex, (I), is built up of tetranuclear $[Mo_4O_{10}(OCH_3)_4Cl_2]^{2-}$ anions and tetramethyl-

ammonium cations. The centrosymmetric anion consists of four edge-sharing octahedra, two MoO_6 and two MoO_5Cl . As a result of displacement of metal ions towards the polyanion surface, all four octahedra are distorted. The Mo2 site displays an $[MoO_6]$ geometry through ligation by two terminal and one bridging oxo groups, and two triply bridging and one doubly bridging methoxo group, while the Mo1 centre displays $[MoO_5Cl]$ coordination by one doubly bridging and one triply bridging methoxy group, one bridging and two terminal oxo groups, and the terminal chloride ligand. All bond lengths and angles are comparable with those observed in previously mentioned complexes (Table 1).

Experimental

In an attempt to prepare a molybdenum(VI) complex with the methyl ester of 2-hydroxynicotinic acid, a mixture of MoO₂Cl₂ (0.4 g), [(CH₃)₄N]Cl (0.22 g) and a methanol suspension of 2-hydroxynicotinic acid (0.31 g in 10 ml MeOH) was dissolved in methanol (20 ml) and heated under reflux for 4 h. The resulting colourless solution was left to stand at room temperature. After 2 d, transparent colourless crystals (0.17 g; 38.6% yield) were isolated. Elemental analysis (%) found (calculated) for [(CH₃)₄N]₂[Mo₄O₁₀(OCH₃)₄Cl₂]: Mo 43.6 (43.3), C 16.6 (16.3), H 4.2% (4.1%).

Crystal data

-	
$\begin{array}{l} ({\rm C_4H_{12}N})_2 [{\rm Mo_4O_{10}(\rm OCH_3)_4Cl_2}] \\ M_r = 887.09 \\ {\rm Monoclinic}, P_{2_1/c} \\ a = 8.810 \ (2) \ {\rm \mathring{A}} \\ b = 11.047 \ (2) \ {\rm \mathring{A}} \\ c = 15.085 \ (3) \ {\rm \mathring{A}} \\ \beta = 98.67 \ (3)^{\circ} \\ V = 1451.4 \ (5) \ {\rm \mathring{A}}^3 \\ Z = 2 \end{array}$	$D_x = 2.030 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 6079 reflections $\theta = 2.73-28.23^{\circ}$ $\mu = 1.931 \text{ mm}^{-1}$ T = 293 (2) K Prism, colourless $0.38 \times 0.36 \times 0.35 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer $2^{\circ} \varphi$ and ω scans 6079 measured reflections 3568 independent reflections 3048 reflections with $I > 2\sigma(I)$	$R_{\text{int}} = 0.016$ $\theta_{\text{max}} = 28.23^{\circ}$ $h = -11 \rightarrow 11$ $k = -13 \rightarrow 14$ $l = -20 \rightarrow 20$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.031$ $wR(F^2) = 0.079$ S = 1.044 3568 reflections 161 parameters	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0358P)^{2} + 0.9758P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{\text{max}} = 0.034$ $\Delta\rho_{\text{max}} = 0.43 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{\text{min}} = -0.68 \text{ e} \text{ Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97

Extinction coefficient: 0.0035 (4)

Table 1

Selected geometric parameters (Å, °).

Mo1-O11	1.692 (2)	Mo2-O21	1.689 (2)
Mo1-O12	1.694 (2)	Mo2-O22	1.694 (2)
Mo1-O1	1.913 (2)	Mo2-O1	1.904 (2)
Mo1-O3	2.221 (2)	Mo2-O3 ⁱ	2.027 (2)
Mo1-O2	2.272 (2)	Mo2-O2 ⁱ	2.217 (2)
Mo1-Cl	2.4395 (12)	Mo2-O2	2.384 (2)
011 Mo1 012	105 62 (12)	021 Mo2 03 ⁱ	101 17 (11)
011 - Mo1 - 012 011 - Mo1 - 01	99.99(11)	$021 - M02 - 03^{i}$	91.65 (11)
011 - M01 - 01 012 - M01 - 01	100.07(11)	$O_{22} - MO_2 - O_3^{i}$	150.01 (0)
012 - M01 - 01 011 Mo1 03	03.04(10)	O1 MO2 - O3	94.90(11)
012 - Mo1 - 03	159 31 (11)	021 - M02 - 02 $022 - M02 - 02^{i}$	156 30 (11)
012 Mol 03	82 72 (9)	$01 - M_0 - 02^i$	85 73 (8)
01 - Mo1 - 02	161.34(10)	$O3^{i} - Mo2 - O2^{i}$	72.13 (8)
O12-Mo1-O2	93.00 (10)	O21-Mo2-O2	164.68 (11)
O1-Mo1-O2	75.17 (8)	O22-Mo2-O2	89.30 (10)
O3-Mo1-O2	67.72 (7)	O1-Mo2-O2	72.60 (8)
O11-Mo1-Cl	94.70 (9)	O3 ⁱ -Mo2-O2	82.53 (8)
O12-Mo1-Cl	90.62 (9)	O2 ⁱ -Mo2-O2	71.91 (8)
O1-Mo1-Cl	158.71 (7)	Mo2-O1-Mo1	117.98 (11)
O3-Mo1-Cl	80.96 (6)	Mo2 ⁱ -O2-Mo1	105.27 (8)
O2-Mo1-Cl	86.01 (5)	Mo2 ⁱ -O2-Mo2	108.10 (8)
O21-Mo2-O22	105.35 (13)	Mo1-O2-Mo2	89.22 (7)
O21-Mo2-O1	99.27 (11)	Mo2 ⁱ -O3-Mo1	114.16 (9)
022 - Mo2 - 01	102.65 (11)		

Symmetry code: (i) 2 - x, 1 - y, -z.

All H atoms were fixed geometrically.

Data collection: *COLLECT* (Hooft, 1998); cell refinement: *DENZO* (Otwinowski & Minor, 1997); data reduction: *DENZO*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); software used to prepare material for publication: *SHELXL*97.

This work was supported by the Ministry of Science and Technology of the Republic of Croatia (project No. 119407).

References

- Cindrić, M., Strukan, N., Kajfež, T. & Kamenar, B. (1998). VIIth Slovenian-Croatian Crystallographic Meeting, Radenci, Slovenia, Book of Abstracts, p. 40.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Kang, H., Liu, S., Shaikh, S. N., Nicholson, T. & Zubieta, J. (1989). Inorg. Chem. 28, 920–933.
- Liu, S., Shaikh, S. N. & Zubieta, J. (1987). Inorg. Chem. 26, 4305-4307.
- Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307-326.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wilson, A. J., Robinson, W. T. & Wilkins, C. J. (1983). Acta Cryst. C39, 54-56.